Markov Chain Importance Sampling—A Highly Efficient Estimator for MCMC

نویسندگان

چکیده

Markov chain algorithms are ubiquitous in machine learning and statistics many other disciplines. Typically, these can be formulated as acceptance rejection methods. In this work, we present a novel estimator applicable to methods, dubbed importance sampling, which efficiently makes use of rejected proposals. For the unadjusted Langevin algorithm, it provides way correcting discretization error. Our satisfies central limit theorem improves on error per CPU cycle, often large extent. As by-product enables estimating normalizing constant, an important quantity Bayesian statistics. Supplementary materials for article available online.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

Improving MCMC, using efficient importance sampling

This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon E cient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate Monte-Carlo integration procedure based on sampling densities which are chosen to be global approximations to ...

متن کامل

Comparison of two Markov chain Monte Carlo (MCMC) methods

As the world advances, statisticians/mathematicians are being involved into more and more complex surveys for the development of society and human beings. Consequently, these complex survey data requires complicated and high-dimensional models for final analysis. We need sophisticated and efficient statistical/mathematical tools for estimation and prediction of these models. Frequently, we simu...

متن کامل

Efficient Continuous-Time Markov Chain Estimation

Many problems of practical interest rely on Continuous-time Markov chains (CTMCs) defined over combinatorial state spaces, rendering the computation of transition probabilities, and hence probabilistic inference, difficult or impossible with existing methods. For problems with countably infinite states, where classical methods such as matrix exponentiation are not applicable, the main alternati...

متن کامل

LTSD: a highly efficient symmetry-based robust estimator

Although the least median of squares (LMedS) method and the least trimmed squares (LTS) method are said to have a high breakdown point (50%), they can break down at unexpectedly lower percentages of outliers when those outliers are clustered. In this paper, we investigate the breakdown of LMedS and the LTS when a large percentage of clustered outliers exist in the data. We introduce the concept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Graphical Statistics

سال: 2021

ISSN: ['1061-8600', '1537-2715']

DOI: https://doi.org/10.1080/10618600.2020.1826953